Principles of Communications ECS 332

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 4.6 QAM

Office Hours:

Check Google Calendar on the course website. Dr.Prapun's Office: 6th floor of Sirindhralai building, BKD

[4.8] Implementation issues:

Problem	Solutions
Modulator construction	Square mod [4.56]; SW mod [4.58],
Demodulator construction; Synchronization between the two (local) carriers/oscillators	AM (Additional carrier component is transmitted) + Rectifier/Envelope Detector [4.71-4.72]
Spectral inefficiency	[Sec. 4.6] Bandwidth-Efficient Mod.

DSB = double sidebands

- [2.30] When m(t) is realvalued, its spectrum M(f)has conjugate symmetry.
- [4.9] With such message, the corresponding modulated signal's spectrum X(f) will also inherit the symmetry but now centered at f_c (instead of at 0).
- The portion that lies above f_c is known as the upper sideband (USB) and the portion that lies below f_c is known as the lower sideband (LSB).
- Similarly, the spectrum centered at $-f_c$ has upper and lower sidebands.

ECS 332: Principles of Communications

HW 5 — Due: Not Due Solution

Lecturer: Prapun Suksompong, Ph.D.

Problem 4. This question starts with a *square-modulator* for DSB-SC. Then, the use of the square-operation block is further explored on the receiver side of the system. [Doerschuk, 2008, Cornell ECE 320]

(a) Let $x(t) = A_c m(t)$ where $m(t) \xrightarrow{\mathcal{F}} M(f)$ is bandlimited to B, i.e., |M(f)| = 0 for |f| > B. Consider the block diagram shown in Figure 5.3.

Figure 5.3: Block diagram for Problem 4a

Assume $f_c \gg B$ and

$$H_{BP}(f) = \begin{cases} 1, & |f - f_c| \le B\\ 1, & |f + f_c| \le B\\ 0, & \text{otherwise.} \end{cases}$$

2019/1

ECS 332: Principles of Communications

HW 5 — Due: Not Due **Solution**

Lecturer: Prapun Suksompong, Ph.D.

Problem 6. Consider a signal g(t). Recall that $|G(f)|^2$ is called the **energy spectral** density of g(t). Integrating the energy spectral density over all frequency gives the signal's total energy. Furthermore, the energy contained in the frequency band I can be found from the integral $\int_{I} |G(f)|^2 df$ where the integration is over the frequencies in band I. In particular, if the band is simply an interval of frequency from f_1 to f_2 , then the energy contained in this band is given by

$$\int_{f_1}^{f_2} |G(f)|^2 df.$$
(5.1)

2019/1

In this problem, assume

$$g(t) = 1[-1 \le t \le 1].$$

(a) Find the (total) energy of g(t).

$$E_{j} = \int_{-\infty}^{\infty} |g|t||^{2} dt = \int_{-\infty}^{\infty} (1[-1 \le t \le 1])^{2} dt = \int_{-1}^{1} 1 dt = 2.$$

 ECS 332: Principles of Communications
 2019/1

 HW 5 — Due: Not Due
 Solution

 Lecturer: Prapun Suksompong, Ph.D.

(b) Figure 5.7 define the main lobe of a sinc pulse. It is well-known that the main lobe of the sinc function contains about 90% of its total energy. Check this fact by first computing the energy contained in the frequency band occupied by the main lobe and then compare with your answer from part (a).

ECS 332: Principles of Communications

HW 5 — Due: Not Due Solution

2019/1

Lecturer: Prapun Suksompong, Ph.D.

(b) Figure 5.7 define the main lobe of a sinc pulse. It is well-known that the main lobe of the sinc function contains about 90% of its total energy. Check this fact by first computing the energy contained in the frequency band occupied by the main lobe and then compare with your answer from part (a).

IEEE 802.11ac

From Wikipedia, the free encyclopedia

IEEE 802.11ac is a wireless networking standard in the 80 The standard was developed in the IEEE Standards Assoc retroactively labelled as **Wi-Fi 5** by Wi-Fi Alliance.^{[3][4]}

Data rates and speed [edit]				
MCS index ^[a]	Spatial Streams	Modulation type	Coding rate	
0	1	BPSK	<mark>1/2</mark>	
1	1	QPSK	1/2	
2	1	QPSK	3/4	
3	1	16-QAM	1/2	
4	1	16-QAM	3/4	
5	1	64-QAM	2/3	
6	1	64-QAM	3/4	
7	1	64-QAM	5/6	
8	1	256-QAM	3/4	
9	1	256-QAM	5/6	
0	2	BPSK	1/2	
1	2	QPSK	1/2	
2	2	QPSK	3/4	
3	2	16-QAM	1/2	
4	2	16-QAM	3/4	
5	2	64-QAM	2/3	
6	2	64-QAM	3/4	
7	2	64-QAM	5/6	
8	2	256-QAM	3/4	
9	2	256-QAM	5/6	

Three Forms of QAM

$$\begin{array}{l} \text{Imphasize that there are two messages} \\ x_{\text{QAM}}(t) &= 3\sqrt{2}\cos(2\pi f_c t) + 4\sqrt{2}\sin(2\pi f_c t) \\ \Leftrightarrow 3\sqrt{2}\angle 0^\circ + 4\sqrt{2}\angle -90^\circ \approx 5\sqrt{2}\angle -53^\circ \\ \Leftrightarrow 5\sqrt{2}\cos(2\pi f_c t + (-53^\circ)) \\ \end{array}$$

$$\begin{array}{l} \text{Imphasize that the messages are embedded} \\ \text{in both amplitude and phase of the carrier} \\ & e^{jx} = \cos(x) + j\sin(x) \\ \cos(x) &= \{e^{jx}\} \\ \end{array}$$

$$\begin{array}{l} e^{jx} = -j\cos(x) + \sin(x) \\ \sin(x) &= \{-je^{jx}\} \\ \sin(x) &= \{-je^{jx}\} \\ \end{array}$$

$$\begin{array}{l} s_{\text{QAM}}(t) = 3\sqrt{2}\text{Re}\{e^{j2\pi f_c t}\} + 4\sqrt{2}\text{Re}\{-je^{j2\pi f_c t}\} \\ &= \sqrt{2}\text{Re}\{(3-4j)e^{j2\pi f_c t}\} \\ \end{array}$$

$$\begin{array}{l} \text{Imphasize the use of the combined complex-valued representation of the two messages} \end{array}$$

Three Forms of QAM Emphasize that there are two messages $x_{\text{OAM}}(t) = m_1(t)\sqrt{2}\cos(2\pi f_c t) + m_2(t)\sqrt{2}\sin(2\pi f_c t)$ $\Leftrightarrow m_1(t)\sqrt{2}\angle 0^\circ + m_1(t)\sqrt{2}\angle - 90^\circ$ $= E(t)\sqrt{2} \angle \phi(t)$ Emphasize that the messages are embedded in $\Leftrightarrow \sqrt{2}E(t)\cos(2\pi f_c t + \phi(t))$ 2 both amplitude and phase of the carrier $e^{jx} = \cos(x) + j\sin(x)$ $-je^{jx} = -j\cos(x) + \sin(x)$ $\cos(x) = \{e^{jx}\}$ $\sin(x) = \{-je^{jx}\}$ $x_{\text{QAM}}(t) = m_1(t)\sqrt{2}\text{Re}\{e^{j2\pi f_c t}\} + m_2(t)\sqrt{2}\text{Re}\{-je^{j2\pi f_c t}\}$ 3 $= \sqrt{2} \operatorname{Re}\{(m_1(t) - jm_2(t))e^{j2\pi f_c t}\}$ Emphasize the use of the combined complex-

valued representation of the two messages.